Peroxisome proliferator activated receptor-γ in osteoblasts controls bone formation and fat mass by regulating sclerostin expression
نویسندگان
چکیده
•PPARγ in osteoblasts and osteocytes regulates bone fat mass•Mice lacking PPARγ have reduced sclerostin production•Sclerostin contributes to the adipose phenotypes of mutant mice•Sclerostin loss function synergizes with improve metabolism The nuclear receptor peroxisome proliferator activated receptor-γ (PPARγ) is a key contributor metabolic via its adipogenic insulin-sensitizing functions, but it has negative effects on skeletal homeostasis. Here, we questioned whether actions are linked. Ablating Pparg expression produced high mass phenotype, secondary increased osteoblast activity, reduction subcutaneous because fatty acid synthesis oxidation. mutants proceed from regulation production by PPARγ. Mutants exhibited reductions Sost serum levels while increasing normalized both phenotypes. Importantly, disrupting synergized agonist preventing loss. These data suggest that modulating action may prevent associated anti-diabetic therapies augment their actions. cycle osteoclastic resorption osteoblastic formation maintains strength strongly influenced status. In extreme cases like anorexia nervosa, malnutrition can result growth arrest failure achieve expected peak mass.1Misra M. Klibanski A. Endocrine consequences nervosa.Lancet Diabetes Endocrinol. 2014; 2: 581-592https://doi.org/10.1016/S2213-8587(13)70180-3Abstract Full Text PDF PubMed Scopus (186) Google Scholar Similarly, less severe more prevalent conditions type I II diabetes mellitus deviations glucose homeostasis lead low mineral density or quality, respectively, increase risk facture.2Hofbauer L.C. Busse B. Eastell R. Ferrari S. Frost Müller Burden A.M. Rivadeneira F. Napoli N. Rauner Bone fragility diabetes: novel concepts clinical implications.Lancet 2022; 10: 207-220https://doi.org/10.1016/S2213-8587(21)00347-8Abstract (56) Understanding physiologic basis for these interactions will aid treatment comorbid obesity, disease, osteopenia/osteoporosis. A primary point connection between direct indirect hormones adipose,3Kajimura D. Lee H.W. Riley K.J. Arteaga-Solis E. Ferron Zhou Clarke C.J. Hannun Y.A. DePinho R.A. Guo X.E. et al.Adiponectin opposite central peripheral mechanisms through FoxO1.Cell Metab. 2013; 17: 901-915https://doi.org/10.1016/j.cmet.2013.04.009Abstract (176) muscle,4Estell E.G. Le P.T. Vegting Y. Kim H. Wrann C. Bouxsein M.L. Nagano K. Baron Spiegelman B.M. Rosen Irisin directly stimulates osteoclastogenesis vitro vivo.Elife. 2020; 9: e58172https://doi.org/10.7554/eLife.58172Crossref intestine5Hansen M.S. Alliances gut axis.Semin. Cell Dev. Biol. 123: 74-81https://doi.org/10.1016/j.semcdb.2021.06.024Crossref (9) other tissues activity osteoclasts. As an example, insulin promotes differentiation mice exhibit volume deficient numbers osteoblasts.6Fulzele Riddle R.C. DiGirolamo D.J. Cao X. Wan Chen Faugere M.C. Aja Hussain M.A. Brüning J.C. Clemens T.L. Insulin signaling postnatal acquisition body composition.Cell. 2010; 142: 309-319https://doi.org/10.1016/j.cell.2010.06.002Abstract (601) turn, secrete factors influence functions same tissues.7Dirckx Moorer role energy homeostasis.Nat. Rev. 2019; 15: 651-665https://doi.org/10.1038/s41574-019-0246-yCrossref (123) first evidence this link was identified osteocalcin. Produced exclusively mature osteoblasts, osteocalcin pancreas8Lee N.K. Sowa Hinoi Ahn J.D. Confavreux Dacquin Mee P.J. McKee M.D. Jung D.Y. al.Endocrine skeleton.Cell. 2007; 130: 456-469https://doi.org/10.1016/j.cell.2007.05.047Abstract (1990) Scholar,9Ferron Levine R.L. Ducy P. Karsenty G. Intermittent injections 2 mice.Bone. 2012; 50: 568-575https://doi.org/10.1016/j.bone.2011.04.017Crossref (328) as well performance muscle.10Mera Laue Wei J. Galan-Diez Lacampagne Mitchell S.J. Mattison J.A. al.Osteocalcin myofibers necessary sufficient optimum adaptation exercise.Cell 2016; 23: 1078-1092https://doi.org/10.1016/j.cmet.2016.05.004Abstract (242) Scholar,11Mera Berger J.M. Osteocalcin maintain muscle older mice.Mol. 5: 1042-1047https://doi.org/10.1016/j.molmet.2016.07.002Crossref (134) Sclerostin, cysteine-knot glycoprotein encoded SOST gene primarily if not matrix-embedded osteocytes, major regulator evidenced rare bone-overgrowth linked mutations production.12Balemans W. Ebeling Patel Van Hul Olson Dioszegi Lacza Wuyts Den Ende Willems al.Increased sclerosteosis due deficiency secreted protein (SOST).Hum. Mol. Genet. 2001; 537-543Crossref Scholar,13Balemans Dikkers F.G. Hildering al.Identification 52 kb deletion downstream patients van Buchem disease.J. Med. 2002; 39: 91-97https://doi.org/10.1136/jmg.39.2.91Crossref (586) Scholar,14Staehling-Hampton Proll Paeper B.W. Zhao L. Charmley Brown Gardner Galas Schatzman Beighton al.A 52-kb SOST-MEOX1 intergenic region 17q12-q21 disease Dutch population.Am. 110: 144-152https://doi.org/10.1002/ajmg.10401Crossref (249) By binding low-density lipoprotein receptor-related protein-5 (LRP5) LRP6 co-receptors, antagonizes Wnt/β-catenin pathway15Ellies D.L. Viviano McCarthy Rey J.P. Itasaki Saunders Krumlauf ligand, interacts LRP5 LRP5G171V modulate Wnt activity.J. Miner. Res. 2006; 21: 1738-1749https://doi.org/10.1359/jbmr.060810Crossref (289) Scholar,16Semënov Tamai He ligand LRP5/LRP6 inhibitor.J. Chem. 2005; 280: 26770-26775https://doi.org/10.1074/jbc.M504308200Abstract (618) knockout develop phenotype enhanced activity.17Li Ominsky Niu Q.T. Sun Daugherty D'Agostin Kurahara Gao Gong al.Targeted results strength.J. 2008; 860-869https://doi.org/10.1359/jbmr.080216Crossref (771) our previous work, demonstrated also influences accumulation visceral tissue. Sost−/− when fed either normal diet sensitivity, whereas overproduction white tissue hypertrophy.18Kim S.P. Frey J.L. Li Z. Kushwaha Zoch Tomlinson R.E. Da Noh H.L. J.K. al.Sclerostin composition regulating catabolic anabolic adipocytes.Proc. Natl. Acad. Sci. USA. 2017; 114: E11238-E11247https://doi.org/10.1073/pnas.1707876115Crossref (99) driven sclerostin’s over commitment adipoprogenitors19Kim Wang Taketo M.M. Bone-derived Wnt/beta-catenin regulate PDGFRalpha(+) adipoprogenitor cell differentiation.FASEB 2021; 35: e21957https://doi.org/10.1096/fj.202100691RCrossref (12) alterations balance degradation.18Kim Along lines, humans been positively correlated index diabetics health individuals20Amrein Amrein Drexler Dimai H.P. Dobnig Pfeifer Tomaschitz Pieber T.R. Fahrleitner-Pammer Sclerostin association physical age, gender, composition, content healthy adults.J. Clin. 97: 148-154https://doi.org/10.1210/jc.2011-2152Crossref (216) Scholar,21Urano T. Shiraki Ouchi Inoue Association circulating disease--related markers Japanese postmenopausal women.J. E1473-E1477https://doi.org/10.1210/jc.2012-1218Crossref (83) negatively parameters homeostasis.22Daniele Winnier Mari Bruder Fourcaudot Pengou Tripathy Jenkinson Folli resistance prediabetes: cross talk metabolism.Diabetes Care. 2015; 38: 1509-1517https://doi.org/10.2337/dc14-2989Crossref (85) Scholar,23Rianon N.J. Smith S.M. Pervin Musgrave Watt G.P. Nader Khosla Ambrose C.G. McCormick J.B. Fisher-Hoch Glycemic control turnover Mexican Americans diabetes.J. Osteoporos. 2018; 2018: 7153021https://doi.org/10.1155/2018/7153021Crossref (11) Scholar,24Yu O.H.Y. Richards Josse R.G. Leslie W.D. Goltzman Kaiser Kovacs C.S. Davison K.S. incident risk: cohort study.Clin. 86: 520-525https://doi.org/10.1111/cen.13300Crossref (27) emergence neutralizing antibodies osteopenia/osteoporosis25Cosman Crittenden D.B. Adachi Binkley Czerwinski Hofbauer Lau Lewiecki E.M. Miyauchi al.Romosozumab women osteoporosis.N. Engl. 375: 1532-1543https://doi.org/10.1056/NEJMoa1607948Crossref (906) Scholar,26McClung M.R. Grauer Boonen Bolognese Diez-Perez Langdahl B.L. Reginster J.Y. Zanchetta J.R. Wasserman density.N. 370: 412-420https://doi.org/10.1056/NEJMoa1305224Crossref (853) raises possibility therapeutic approach could positive impacts health. Indeed, neutralization mouse models marrow adipogenesis27Fairfield Falank Harris Demambro V. McDonald Pettitt Mohanty S.T. Croucher Kramer I. Kneissel al.The cell-derived molecule drives adipogenesis.J. Cell. Physiol. 233: 1156-1167https://doi.org/10.1002/jcp.25976Crossref (101) improves diet.18Kim Expression induced several insults, including feeding,18Kim Scholar,28Baek Hwang H.R. Park H.J. Kwon Qadir A.S. Ko S.H. Woo K.M. Ryoo H.M. G.S. Baek J.H. TNF-alpha upregulates obese high-fat diet.J. 229: 640-650https://doi.org/10.1002/jcp.24487Crossref (81) inflammation,28Baek hyperglycemia,29Pacicca D.M. Watkins Kover Yan Prideaux Bonewald Elevated acts diabetes.Sci. Rep. 17353https://doi.org/10.1038/s41598-019-52224-3Crossref (26) little known about links production. studies, focused (PPARγ). response diverse set endogenous synthetic ligands forms heterodimer Retinoid X Receptor α then genes involved cellular whole-body metabolism.30Fang Zhang Liu Cui Q. PPARgene: database experimentally verified computationally predicted PPAR target genes.PPAR 2016: 6042162https://doi.org/10.1155/2016/6042162Crossref (68) Scholar,31Tontonoz Graves Budavari A.I. Erdjument-Bromage Lui Hu Tempst Adipocyte-specific transcription factor ARF6 heterodimeric complex two hormone receptors, gamma RXR alpha.Nucleic Acids 1994; 22: 5628-5634https://doi.org/10.1093/nar/22.25.5628Crossref (331) Scholar,32Ahmadian Suh Hah Liddle Atkins A.R. Downes Evans R.M. PPARgamma metabolism: good, bad future.Nat. 19: 557-566https://doi.org/10.1038/nm.3159Crossref (1312) Early studies indicated induce vitro,33Tontonoz Stimulation adipogenesis fibroblasts 2, lipid-activated factor.Cell. 79: 1147-1156https://doi.org/10.1016/0092-8674(94)90006-xAbstract (0) ablating AdipoQ+ cells resulted lipoatrophy, hyperglycemia resistance.34Wang Mullican S.E. DiSpirito Peed Lazar Lipoatrophy disturbance fat-specific PPARgamma.Proc. 18656-18661https://doi.org/10.1073/pnas.1314863110Crossref (190) expressed lineage activation widely considered be detrimental overall favors progenitor differentiation35Lecka-Czernik Gubrij Moerman E.J. Kajkenova O. Lipschitz D.A. Manolagas S.C. Jilka Inhibition Osf2/Cbfa1 terminal PPARgamma2.J. Biochem. 1999; 74: 357-371Crossref (449) Scholar,36Shockley K.R. Lazarenko O.P. Czernik Churchill G.A. Lecka-Czernik PPARgamma2 controls multiple regulatory pathways mesenchymal stem cells.J. 2009; 106: 232-246https://doi.org/10.1002/jcb.21994Crossref (149) agonists fracture risk.37Bilezikian Miller Wooddell Northcutt Kravitz B.G. Paul Cobitz al.Rosiglitazone decreases increases mellitus.J. 98: 1519-1528https://doi.org/10.1210/jc.2012-4018Crossref addition, genetic which abolished decreased related altered elements present promoter.38Baroi Chougule Griffin P.R. PPARG expression, mass, adiposity mediates TZD-induced loss.Bone. 147: 115913https://doi.org/10.1016/j.bone.2021.115913Crossref (16) Scholar,39Cao Ding Pan Rosario Su Bao Xu McGee Lawrence M.E. Hamrick M.W. al.Deletion protects against aging-induced cortical mice.J. Gerontol. 75: 826-834https://doi.org/10.1093/gerona/glaa049Crossref (7) Scholar,40Brun Berthou Trajkovski Maechler Foti Bonnet browning osteoblast/osteocyte expression.Diabetes. 66: 2541-2554https://doi.org/10.2337/db17-0116Crossref (33) hypothesized provides mechanistic factor’s We find ablation development striking mass. coincide diminished rescued adeno-associated virus overproduction. Moreover, diminishing protection synergistically improving sensitivity. To determine coordinately homeostasis, generated selectively ablated osteocytes. Control (PpargloxP/loxP) osteoblast/osteocyte-specific (Ocn-CreTG/+; PpargloxP/loxP, hereafter referred ΔPparg) were born at Mendelian frequency no gross anatomical Although mRNA age femurs male controls, consistently (∼50–80%, Figure 1A). recombination detected only ΔPparg (Figure 1B) weight similar knockouts all timepoints examined 1C). Parameters architecture distal femur young, (8 weeks), aged microCT analyses revealed (Figures 1D–1G). Relative littermates, trabecular per 27.5%, significant number, 24.1%, thickness, 16- 24-week-old mice, respectively. Cortical femoral mid-diaphysis age-related changes structure cross-sectional area comparable 8 weeks, significantly ages 16 24 weeks 1H–1K). Histomorphometric performed 16-week 1L–1O), apposition rate rate, decrease osteoclast 1P 1Q). abundance adipocytes 1R). Similar vivo, cultures calvarial differentiation. Compared staining alkaline phosphatase matrix mineralization Runx2, Atf4, Bglap2 S1D). Tnfsf11 (rank ligand) affected Tnfrsf11b (osteoprotegerin) S1E), explain osteoclasts observed vivo. Therefore, maturing development. Assessment organ weights necropsy composition. When compared gonadal pad (gWAT) 2A) inguinal (iWAT) 2B). Histological examination iWAT adipocyte size dramatic multilocular 2D). Intrascapular brown (BAT) morphometry 2C 2D) organs S2A–S2C) controls. detectable change feeding behavior, levels, expenditure 2E, 2F, S2D–S2F). However, suggested ratio synthesis, Acaca Fasn, 2G 2H) oxidation (Acadl, Cpt1a, Ppara, 2I) Furthermore, (Ppargc1a Ucp1, 2I), UCP1 immunostaining 2D), mitochondrial proteins 2J) suggesting induction beiging depot. Except modest, Atp5a1, BAT 2K), consistent Analysis metabolites developed improvements lipid metabolism. Serum triglycerides 2L) free cholesterol 2M 2N). Random pancreatic β-cell islet morphology mutants, lower suggests sensitivity 2O–2R). excursions during tolerance testing dampened relative 2S) greater degree 2T). ability stimulate AKT phosphorylation iWAT, quadriceps, liver littermates 2U). Female S3). depots female Likewise, displayed test. Thus, simultaneously whole further examine effect metabolism, next challenged (HFD, 60% kcal fat) 4 weeks. Surprisingly, HFD PPARγ-deficiency 3A) 3B). Because chow 1E), normalization after represented substantial suppression accrual (% BV/TV −16.21 ± 18.07% versus −34.70 16.36%, p = 0.042, Mean SD). compartment, HFD-fed Tt. Ar 13.70 11.89% −0.92 7.37%, 0.007) likely feeding. contrast, retained During 12-week study, gain 3C) had BAT, 3D–3F S4A). chow-fed histological molecular 3G–3J). except Ucp1 remained elevated considerably than 2I 3K). Adipocyte gWAT (despite synthesis), there marked inflammation S4B–S4E). liver, marker steatosis 3G 3L–3N). contributed maintenance improved mirrored mutants. random 3O 3P) tests 3Q 3R). triglycerides, fatt
منابع مشابه
Mode of peroxisome proliferator-activated receptor γ activation by luteolin.
The peroxisome proliferator-activated receptor γ (PPARγ) is a target for treatment of type II diabetes and other conditions. PPARγ full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPARγ but, unlike TZDs, does not pro...
متن کاملRole of Peroxisome Proliferator-Activated Receptor-γ in Vascular Inflammation
Vascular inflammation plays a crucial role in atherosclerosis, and its regulation is important to prevent cerebrovascular and coronary artery disease. The inflammatory process in atherogenesis involves a variety of immune cells including monocytes/macrophages, lymphocytes, dendritic cells, and neutrophils, which all express peroxisome proliferator-activated receptor-γ (PPAR-γ). PPAR-γ is a nucl...
متن کاملPeroxisome Proliferator-Activated Receptor-γ in Thyroid Autoimmunity
Peroxisome proliferator-activated receptor- (PPAR-) γ expression has been shown in thyroid tissue from patients with thyroiditis or Graves' disease and furthermore in the orbital tissue of patients with Graves' ophthalmopathy (GO), such as in extraocular muscle cells. An increasing body of evidence shows the importance of the (C-X-C motif) receptor 3 (CXCR3) and cognate chemokines (C-X-C motif)...
متن کاملRole of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases
Peroxisome proliferator-activated receptor γ (PPAR γ), a member of the nuclear receptor superfamily, is a ligand-activated transcription factor that plays an important role in the control of a variety of physiological processes. The last decade has witnessed an increasing interest for the role played by the agonists of PPAR γ in antiangiogenesis, antifibrosis, anti-inflammation effects and in c...
متن کاملGene Expression Profile of Adipocyte Differentiation and Its Regulation by Peroxisome Proliferator-Activated Receptor-γ Agonists.
PPAR gamma is an adipocyte-specific nuclear hormone receptor. Agonists of PPAR gamma, such as thiazolidinediones (TZDs), promote adipocyte differentiation and have insulin-sensitizing effects in animals and diabetic patients. Affymetrix oligonucleotide arrays representing 6347 genes were employed to profile the gene expression responses of mature 3T3-L1 adipocytes and differentiating preadipocy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: iScience
سال: 2023
ISSN: ['2589-0042']
DOI: https://doi.org/10.1016/j.isci.2023.106999